首页> 外文OA文献 >Electrical Resistance and Natural Convection Heat Transfer Modeling of Shape Memory Alloy Wires
【2h】

Electrical Resistance and Natural Convection Heat Transfer Modeling of Shape Memory Alloy Wires

机译:形状记忆合金线的电阻和自然对流传热模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shape memory alloy (SMA) wires are becoming increasingly popular as actuators in automotive applications due to properties such as large recovery strain, low weight, and silent actuation. The length change and thus actuation in SMA wires occur when the wire is heated, usually by passing a direct current through them. One of the difficulties in controlling electrically-heated SMAs occurs in monitoring their temperature, which is done to control the transformation and hence, actuation and avoid possibly permanent damage due to overheating. The temperature of a SMA wire is usually calculated theoretically based on the wire’s natural convection heat transfer coefficient(h).First-order convective heating models are typically used to calculate the natural convection heat transfer coefficient for SMA wires, but there is often significant uncertainty in these calculations due to a lack of existing correlations for thin cylinders, where curvature effects are significant.The purpose of this investigation is to develop models for SMA wires that may be used to predict the temperature of a current-carrying SMA wire without using direct temperature measurement methods. The models were developed based on experimental results for 0.5 mm diameter NiTi SMA wire. First the effect of various parameters such as wire inclination angle, wire length, ambient pressure, phase transformation time rate and applied external stress were investigated on the SMA wire’s electrical resistance. The electrical resistance of the SMA wire was monitored during one complete heating and cooling cycle. Later, based on the experimental results, a resistance model was developed for the current-carrying SMA wires that can be used to predict the wires’ temperature based on electrical resistance. Second, a natural convection heat transfer correlation was developed for NiTi SMA wire, in the range 2.6E-8≤ RaD ≤ 6E-1, which is appropriate for modeling natural convection in most practical applications at ambient conditions. A pressure variation method was used to obtain a range of Rayleigh number for a heated SMA wire. The ambient pressure was controlled within a vacuum chamber, from 1 atm to 2E-4 atm (0.1 MPa to 2E-5 MPa). Data were collected for the wire at various angles under both 100 MPa and stress-free conditions between horizontal to vertical at each set pressure. The new correlation can be used to determine the convective heat transfer coefficient of an SMA wire of known diameter and inclination angle. The convection coefficient (h) is determined using the correlation along with the Prandtl number (Pr), air dynamic viscosity (μ), air compressibility factor (Z), air thermal conductivity (k), and gas constant (Rc). The wire temperature can then be determined by substituting this coefficient into the convective heat transfer equation.
机译:形状记忆合金(SMA)导线由于具有诸如大的恢复应变,重量轻和静音致动等特性,在汽车应用中越来越成为致动器。当加热丝时,通常通过使直流电通过,从而使SMA丝发生长度变化,从而致动。控制电加热的SMA的困难之一是监测其温度,这是为了控制变形并因此进行致动并避免由于过热而可能造成的永久损坏。通常从理论上根据线的自然对流传热系数(h)计算SMA线的温度。通常使用一阶对流加热模型来计算SMA线的自然对流传热系数,但通常存在很大的不确定性在这些计算中,由于缺乏对曲率影响很大的细圆柱体的现有相关性,本研究的目的是开发SMA线的模型,该模型可用于预测载流SMA线的温度而无需使用直接温度测量方法。这些模型是根据直径为0.5 mm的NiTi SMA线的实验结果开发的。首先,研究了各种参数(例如,导线倾角,导线长度,环境压力,相变时间速率和施加的外部应力)对SMA导线电阻的影响。在一个完整的加热和冷却周期中,监控SMA线的电阻。后来,根据实验结果,为载流SMA导线开发了一个电阻模型,该模型可用于基于电阻预测导线的温度。其次,针对NiTi SMA焊丝开发了自然对流传热相关性,范围为2.6E-8≤RaD≤6E-1,适用于在环境条件下的大多数实际应用中对自然对流建模。使用压力变化方法来获得加热的SMA导线的瑞利数范围。在真空室内将环境压力控制在1atm至2E-4atm(0.1MPa至2E-5MPa)。在每个设定压力下,在100 MPa和水平到垂直之间的无应力条件下,以各种角度收集钢丝的数据。新的相关性可用于确定已知直径和倾斜角度的SMA线的对流传热系数。对流系数(h)使用相关性以及普朗特数(Pr),空气动力粘度(μ),空气压缩系数(Z),空气导热系数(k)和气体常数(Rc)来确定。然后可以通过将该系数代入对流传热方程来确定线温度。

著录项

  • 作者

    Eisakhani, Anita;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号